OWASP ESAPI for Java

The OWASP Foundation

Security Bulletin #9

How Does CVE-2022-23302 Impact ESAPI?

Kevin W. Wall <kevin.w.wall@gmail.com>

Summary
Apache Log4j 1's ]JMSSink is vulnerable to insecure deserialization of
Catedory: untrusted logged data when the attacker has write access to the
gory: Log4j configuration or if the configuration references an LDAP service
that the attacker has access to. This may resulting in remote code
execution.
Module: Log4) 1 - a compile dependency used by ESAPI (specifically Log4) 1.2.17 in
) the latest ESAPI version) to support “safe logging”.
Announced: | In this security bulletin.
Credits: Dependency Check
Affects: All versions of ESAPI 2.x and all versions of ESAPI 1.x (no longer supported)
' if you are using ESAPI’s deprecated log4j 1 logging.
Not exploitable as used by ESAPI. See discussion below.
Details: ESAPI Log4j logging deprecated on 2020-07-23 as part of the 2.2.1.0
release.
GitHub
Issue #: None.
Related: No other ESAPI security bulletin, unless you want to include the several
' other Log4]) 1.x related security bulletins.
CWE: CWE-502 (Deserialization of Untrusted Data)
CVE
Identifier: CVE-2022-23302
CVSS v3.1 Base Score: 8.8 (High)
Impact Subscore: 5.9
g;’\fesrity Exploitability Subscore: 2.8
(version CVSS Vector CVSS:3.1/AV:N/AC:L/PR:L/UL:N/S:U/C:H/I:H/
A:H
3.1)
Background

OWASP ESAPI (the OWASP Enterprise Security API) is a free, open source, web application

security control library that makes it easier for programmers to write lower-risk
applications. The ESAPI for Java library is designed to make it easier for programmers to



mailto:kevin.w.wall@gmail.com
https://www.owasp.org/
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/net/JMSSink.html
https://owasp.org/www-project-enterprise-security-api/

retrofit security into existing applications. ESAPI for Java also serves as a solid foundation
for new development.

One of the security controls provided by ESAPI for Java is its provision for “safe logging”
which is designed as a defense against “CWE-117: Improper Output Neutralization for
Logs”. Traditionally, ESAPI 1.2 and 2.x, ESAPI has supported both Java’s standard
java.util.logging (henceforth referred to as JUL) and Apache’s Log4) 1.x. In ESAPI 2.2.0.0,
support for SLF4] was added. For versions of ESAPI, up through and including ESAPI
2.2.0.0, the default configuration for ESAPI has been to use Log4J 1.x and Log4]’s
ConsoleAppender. For release 2.2.1.0, the default ESAPI logger was changed to use JUL. It
should be noted that this decision to use JUL was made prior to the ESAPI development
team becoming aware of this CVE in question. We switched to making JUL ESAPI’'s default
logger shortly after Jeremiah Stacey added some important missing functionality to
ESAPI’s JUL support to bring it more in line with ESAPI’s Log4) logging format. Thus the
reason for the decision was not because of this Log4) CVE though; rather it was made
simply on the basis of Apache Log4J 1 being significantly past end-of-life and no longer
being supported.

Also, as of ESAPI 2.2.1.0, ESAPI has annotated all ESAPI Log4]J-related classes as
‘@deprecated’. However, ESAPI’s deprecation policy is that the ESAPI development would
not delete any classes, methods, or fields marked as ‘@deprecated’ until either 2 years
had passed since the first release when that annotation was added or in the next major
release number (which, in this case, would be 3.0). This is ESAPI's promise to try to give
development teams adequate prior warning before doing something that might break
backward compatibility for ESAPI users in their application code.

Problem Description

According to the description in NIST’s National Vulnerability Database (NVD), the current
description for CVE-2022-23302 states:

“JMSSink in all versions of Log4j 1.x is vulnerable to deserialization of
untrusted data when the attacker has write access to the Log4j configuration
or if the configuration references an LDAP service the attacker has access to.
The attacker can provide a TopicConnectionFactoryBindingName
configuration causing JMSSink to perform JNDI requests that result in remote
code execution in a similar fashion to CVE-2021-4104. Note this issue only
affects Log4j 1.x when specifically configured to use JMSSink, which is not
the default. Apache Log4j 1.2 reached end of life in August 2015. Users
should upgrade to Log4j 2 as it addresses numerous other issues from the
previous versions.”

So the real question that everyone is asking is will using ESAPI leave my application code
exposed to CVE-2022-23302 in a manner that makes this CVE exploitable? That is the


https://nvd.nist.gov/vuln/detail/CVE-2022-23302
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/ConsoleAppender.html
http://www.slf4j.org/
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/117.html

question this analysis attempts to answer, but the TL;DR answer for those of you not
interested in the details is,

“No, not unless you have your application configured in the following manner:
1. You are using the deprecated ESAPI log4j logging

2. You have changed your default log4j.xml configuration (or log4j.properfies
file, if you're still doing that) file to use JMSAppender for one of its Appenders
(or an attacker is able to overwrite the contents of your Log4J 1 configuration
file [typically, log4j.xml, but possibly log4j.propertie] to set it to use
JMSAppender).”

3. You are running the Apache Log4)1 JMSSink application.

In other words, it's not likely, and with ESAPI's default configuration, not possible (unless
an attacker can also overwrite your ESAPI.properties files, in which case, you likely have
bigger problems).

Apache Log4J’'s JMSAppender is a class that is intended for sending log events to JMS
Topic. The events are serialized and transmitted as JMS message type ObjectMessaqge.

The problem is that if you are using JMSAppender in your Log4) configuration and the
attacker can overwrite or otherwise alter your Log4] configuration file, then Log4]) 1.2.17 is
subject to an Insesure Deserialization attack via JNDI lookups (of which LDAP is but one
type, but the one most often used for exploitation), resulting in remote code execution.
(Insecure Deserialization of untrusted data is essentially the root cause the recent Log4) 2
CVE, CVE-2021-44228 (aka, Log4Shell).

Even the default configuration log4j.xml file that is is provided under the GitHub releases
as part of the various ‘esapi-<version>-configuration.jar’ files only uses ConsoleAppender
and is otherwise intentionally rather brain-dead to force client applications to more or less
create their own log4j configurations.

Thus, our conclusion is, if you refrain from using Apache Log4)’s JMSAppender or running
IMSSink then your application should not be exploitable from this specific log4j CVE even
if you still insist using an unsupported Apache library that is way past its end-of-service
date and that ESAPI has deprecated.

Despite that, the ESAPI development team still advises against configuring ESAPI.Logger
to use Log4J 1. That is why now we have deprecated the use of Log4]) 1 in ESAPI. The mere
fact that Log4J 1.x is unsupported means that there will be no further security patches for
it and the next one that does appear in Log4]) 1 conceivably could be exploitable through
ESAPI when using some more common appender such as FileAppender, ConsoleAppender,
etc.


https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/net/JMSSink.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/net/JMSAppender.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/ConsoleAppender.html
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
https://docs.oracle.com/javaee/7/api/javax/jms/Topic.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/net/JMSAppender.html

Impact

So, if ESAPI does not expose an exploitable path to CVE-2022-23302, what then is the
concern (assuming you don’t use JMSAppender, JMSSink, etc. as described above)? The
problem as we see it, and likely how many in the ESAPI users community view it, is that
Software Composition Analysis (SCA) tools and/or services like OWASP Dependency Check,
BlackDuck, Snyk, Veracode's SourceClear, GitHub, etc. will continue to give you warnings
that you may be required to explain to your management in order to justify continue using
ESAPI in your application.

Removing support for Log4) 1 completely from ESAPI would be in conflict with ESAPI’s
deprecation policy, which is now officially described in ESAPI’'s README.md file, but which
has long been our unofficial policy dating back to ESAPI 2.0.0.0. You are encouraged to
use JUL or SLF4]) for ESAPI logging, as a workaround which is described in the next section.

If as an ESAPI user, you absolutely must continue to use ESAPI's Log4) 1's logger for
compatibility with the rest of your application using Log4J 1.x, make sure that your logging
is not configured to use Log4j’'s JMSAppender. Then you can avoid both CVE-2021-4104
and CVE-2022-23302 (assuming an attacker doesn’t have write access to your Log4] 1
configuration files). You can also show your management this security bulletin. (Of course,
if your application has Log4) 1 as a direct dependency which you can’t eliminate, it
matters little that it is a transitive dependency to your application through ESAPI.)

Workaround

If you are okay with configuring ESAPI logging to use either JUL (which is the new ESAPI
default starting with the ESAPI 2.2.1.0 release) or SLF4] (through which you could support
Log4] 2 through something like slf4j-log4j2), you can use the following (or similar)
workaround when building your project:

First, in your application’s ESAPI.properties file, change the value for the ESAPI.Logger
property to either use JUL or SLF4).

Second, in your application’s pom.xml, reference your dependency on the ESAPI jar in this
manner:

<dependency>
<groupId>org.owasp.esapi</groupId>
<artifactId>esapi</artifactId>
<version>2.4.0.0</version>
<exclusions>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
</exclusions>
</dependency>


https://github.com/ESAPI/esapi-java-legacy/blob/develop/README.md

(Or whatever version of ESAPI you are using; hopefully the latest version.) When you then

build your project, this should exclude the log4j jar from your classpath. (Note that you do
not have to specify a ‘version’.) Note that this of course will only work if you have no other
direct or transitive dependencies on Log4J 1.x.

You can also exclude specific transitive dependencies using Gradle. If you use Grade,
follow these general instructions.

Note that using this workaround with SLF4J requires ESAPI 2.2.0.0 or later; however, you
should be able to use this for any version of ESAPI 2.x if you are willing to use JUL for ESAPI
logging. (Note that if you switch to using JUL for ESAPI versions prior to 2.2.1.0, the logging
output will like slightly different than what you get with it configured to use Log4] 1, but it
will still do “safe” logging.)

Solution

The only “real” solution to this is to have OWASP ESAPI completely remove Log4) 1 as a
dependency. (See GitHub issue #534.) In release 2.2.1.0 it has been deprecated but we
cannot remove it immediately and continue to honor our deprecation policy (until either
two years from the release where it was first announced, which was on the July 23, 2020
release date for the 2.2.1.0 release or in the next major release of ESAPI, which will be
3.0). ESAPI 3.0 is currently only in planning stages. Until then you will either have to live
with the workaround or accept the warnings from various SCA scanners. If you decide to
live with the SCA scanner warnings, perhaps you can show your management this ESAPI
security bulletin to convince them that using ESAPI does not make CVE-2022-23302
exploitable to your application because of the restricted way that ESAPI uses Log4) 1
classes.

Additional Possible Future Plans About Deprecating Log4j 1
The ESAPI development team is also kicking around some ideas such as:

* GitHub Issue #610 - Logging a WARNING for the first ESAPI log4j output that
comes out that warns that ESAPI log4j has been deprecated in release
2.2.1.0 and will be removed in the first release after the 2 year period (i.e.,
after July 23, 2022).

« GitHub Issue #609 - Changing the llog4j 1 dependency in ESAPI’'s pom.xml to
make the log4j 1.2.17 jar to have a scope of either ‘provided’ or ‘optional’ so
that ESAPI will no longer include it as a dependency. That is likely to have it’s
own serious consequences for those who are still using ESAPI logging with
log4j so we eventually decided it was not worth the effort and closed this.


https://github.com/ESAPI/esapi-java-legacy/issues/609
https://github.com/ESAPI/esapi-java-legacy/issues/610
https://github.com/ESAPI/esapi-java-legacy/issues/534
https://discuss.gradle.org/t/how-do-i-exclude-specific-transitive-dependencies-of-something-i-depend-on/17991

Additional Precautions

Run OWASP Dependency Check or a similar SCA tool or service on your final project

configuration to ensure that you have no Log4J) 1 dependencies in your application’s class
path.

Acknowledgments
None. But if someone gave me donuts, I'm sure | could credit someone! :)

References
https://nvd.nist.gov/vuln/detail/CVE-2022-23302

https://github.com/ESAPI/esapi-java-legacy/blob/develop/documentation/ESAPI-security-
bulletin6.pdf - which describes the related CVE, CVE-2021-4104.



https://github.com/ESAPI/esapi-java-legacy/blob/develop/documentation/ESAPI-security-bulletin6.pdf
https://github.com/ESAPI/esapi-java-legacy/blob/develop/documentation/ESAPI-security-bulletin6.pdf
https://nvd.nist.gov/vuln/detail/CVE-2022-23302

	Summary
	Background
	Problem Description
	Impact
	Workaround
	Solution
	Additional Possible Future Plans About Deprecating Log4j 1
	Additional Precautions
	Acknowledgments
	References

