
OWASP ESAPI for Java Security Bulletin #9 The OWASP Foundation

How Does CVE-2022-23302 Impact ESAPI?
Kevin W. Wall <kevin.w.wall@gmail.com>

Summary

Category:

Apache Log4j 1’s JMSSink is vulnerable to insecure deserialization of 
untrusted logged data when the attacker has write access to the 
Log4j configuration or if the configuration references an LDAP service
that the attacker has access to. This may resulting in remote code 
execution.

Module:
Log4J 1 – a compile dependency used by ESAPI (specifically Log4J 1.2.17 in 
the latest ESAPI version) to support “safe logging”.

Announced: In this security bulletin.

Credits:  Dependency Check

Affects:
All versions of ESAPI 2.x and all versions of ESAPI 1.x (no longer supported) 
if you are using ESAPI’s deprecated log4j 1 logging.

Details:
Not exploitable as used by ESAPI. See discussion below.
ESAPI Log4j logging deprecated on 2020-07-23 as part of the 2.2.1.0 
release.

GitHub 
Issue #:

None.

Related:
No other ESAPI security bulletin, unless you want to include the several 
other Log4J 1.x related security bulletins.

CWE: CWE-502 (Deserialization of Untrusted Data)

CVE 
Identifier:

CVE-2022-23302

CVSS 
Severity 
(version 
3.1)

CVSS v3.1 Base Score: 8.8 (High)
    Impact Subscore: 5.9
    Exploitability Subscore: 2.8
CVSS Vector CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/

A:H

Background
OWASP ESAPI (the OWASP Enterprise Security API) is a free, open source, web application 
security control library that makes it easier for programmers to write lower-risk 
applications. The ESAPI for Java library is designed to make it easier for programmers to 

mailto:kevin.w.wall@gmail.com
https://www.owasp.org/
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/net/JMSSink.html
https://owasp.org/www-project-enterprise-security-api/


retrofit security into existing applications. ESAPI for Java also serves as a solid foundation 
for new development.

One of the security controls provided by ESAPI for Java is its provision for “safe logging” 
which is designed as a defense against “CWE-117: Improper Output Neutralization for 
Logs”. Traditionally, ESAPI 1.2 and 2.x, ESAPI has supported both Java’s standard 
java.util.logging (henceforth referred to as JUL) and Apache’s Log4J 1.x. In ESAPI 2.2.0.0, 
support for SLF4J was added. For versions of ESAPI, up through and including ESAPI 
2.2.0.0, the default configuration for ESAPI has been to use Log4J 1.x and Log4J’s 
ConsoleAppender. For release 2.2.1.0, the default ESAPI logger was changed to use JUL. It 
should be noted that this decision to use JUL was made prior to the ESAPI development 
team becoming aware of this CVE in question. We switched to making JUL ESAPI’s default 
logger shortly after Jeremiah Stacey added some important missing functionality to 
ESAPI’s JUL support to bring it more in line with ESAPI’s Log4J logging format. Thus the 
reason for the decision was not because of this Log4J CVE though; rather it was made 
simply on the basis of Apache Log4J 1 being significantly past end-of-life and no longer 
being supported.

Also, as of ESAPI 2.2.1.0, ESAPI has annotated all ESAPI Log4J-related classes as 
‘@deprecated’. However, ESAPI’s deprecation policy is that the ESAPI development would 
not delete any classes, methods, or fields marked as ‘@deprecated’ until either 2 years 
had passed since the first release when that annotation was added or in the next major 
release number (which, in this case, would be 3.0). This is ESAPI’s promise to try to give 
development teams adequate prior warning before doing something that might break 
backward compatibility for ESAPI users in their application code.

Problem Description
According to the description in NIST’s National Vulnerability Database (NVD), the current 
description for CVE-2022-23302 states:

“JMSSink in all versions of Log4j 1.x is vulnerable to deserialization of 
untrusted data when the attacker has write access to the Log4j configuration
or if the configuration references an LDAP service the attacker has access to.
The attacker can provide a TopicConnectionFactoryBindingName 
configuration causing JMSSink to perform JNDI requests that result in remote 
code execution in a similar fashion to CVE-2021-4104. Note this issue only 
affects Log4j 1.x when specifically configured to use JMSSink, which is not 
the default. Apache Log4j 1.2 reached end of life in August 2015. Users 
should upgrade to Log4j 2 as it addresses numerous other issues from the 
previous versions.”

So the real question that everyone is asking is will using ESAPI leave my application code 
exposed to CVE-2022-23302 in a manner that makes this CVE exploitable? That is the 

https://nvd.nist.gov/vuln/detail/CVE-2022-23302
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/ConsoleAppender.html
http://www.slf4j.org/
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/117.html


question this analysis attempts to answer, but the TL;DR answer for those of you not 
interested in the details is,

“No, not unless you have your application configured in the following manner:

1. You are using the deprecated ESAPI log4j logging

2. You have changed your default log4j.xml configuration (or log4j.properfies 
file, if you’re still doing that) file to use JMSAppender for one of its Appenders 
(or an attacker is able to overwrite the contents of your Log4J 1 configuration 
file [typically, log4j.xml, but possibly log4j.propertie] to set it to use 
JMSAppender).”

3. You are running the Apache Log4J1 JMSSink application.

In other words, it’s not likely, and with ESAPI’s default configuration, not possible (unless 
an attacker can also overwrite your ESAPI.properties files, in which case, you likely have 
bigger problems).

Apache Log4J’s JMSAppender is a class that is intended for sending log events to JMS 
Topic. The events are serialized and transmitted as JMS message type ObjectMessage.

The problem is that if you are using JMSAppender in your Log4J configuration and the 
attacker can overwrite or otherwise alter your Log4J configuration file, then Log4J 1.2.17 is
subject to an Insesure Deserialization attack via JNDI lookups (of which LDAP is but one 
type, but the one most often used for exploitation), resulting in remote code execution. 
(Insecure Deserialization of untrusted data is essentially the root cause the recent Log4J 2 
CVE, CVE-2021-44228 (aka, Log4Shell).

Even the default configuration log4j.xml file that is is provided under the GitHub releases 
as part of the various ‘esapi-<version>-configuration.jar’ files only uses ConsoleAppender 
and is otherwise intentionally rather brain-dead to force client applications to more or less 
create their own log4j configurations.

Thus, our conclusion is, if you refrain from using Apache Log4J’s JMSAppender or running 
JMSSink then your application should not be exploitable from this specific log4j CVE even
if you still insist using an unsupported Apache library that is way past its end-of-service 
date and that ESAPI has deprecated.

Despite that, the ESAPI development team still advises against configuring ESAPI.Logger 
to use Log4J 1. That is why now we have deprecated the use of Log4J 1 in ESAPI. The mere
fact that Log4J 1.x is unsupported means that there will be no further security patches for 
it and the next one that does appear in Log4J 1 conceivably could be exploitable through 
ESAPI when using some more common appender such as FileAppender, ConsoleAppender, 
etc.

https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/net/JMSSink.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/net/JMSAppender.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/ConsoleAppender.html
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
https://docs.oracle.com/javaee/7/api/javax/jms/Topic.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/net/JMSAppender.html


Impact
So, if ESAPI does not expose an exploitable path to CVE-2022-23302, what then is the 
concern (assuming you don’t use JMSAppender, JMSSink, etc. as described above)? The 
problem as we see it, and likely how many in the ESAPI users community view it, is that 
Software Composition Analysis (SCA) tools and/or services like OWASP Dependency Check,
BlackDuck, Snyk, Veracode's SourceClear, GitHub, etc. will continue to give you warnings 
that you may be required to explain to your management in order to justify continue using
ESAPI in your application.

Removing support for Log4J 1 completely from ESAPI would be in conflict with ESAPI’s 
deprecation policy, which is now officially described in ESAPI’s README.md file, but which 
has long been our unofficial policy dating back to ESAPI 2.0.0.0. You are encouraged to 
use JUL or SLF4J for ESAPI logging, as a workaround which is described in the next section.

If as an ESAPI user, you absolutely must continue to use ESAPI’s Log4J 1’s logger for 
compatibility with the rest of your application using Log4J 1.x, make sure that your logging
is not configured to use Log4j’s JMSAppender. Then you can avoid both CVE-2021-4104 
and CVE-2022-23302 (assuming an attacker doesn’t have write access to your Log4J 1 
configuration files). You can also show your management this security bulletin. (Of course, 
if your application has Log4J 1 as a direct dependency which you can’t eliminate, it 
matters little that it is a transitive dependency to your application through ESAPI.)

Workaround
If you are okay with configuring ESAPI logging to use either JUL (which is the new ESAPI 
default starting with the  ESAPI 2.2.1.0 release) or SLF4J (through which you could support 
Log4J 2 through something like slf4j-log4j2), you can use the following (or similar) 
workaround when building your project:

First, in your application’s ESAPI.properties file, change the value for the ESAPI.Logger 
property to either use JUL or SLF4J.

Second, in your application’s pom.xml, reference your dependency on the ESAPI jar in this 
manner:

     <dependency>
      <groupId>org.owasp.esapi</groupId>
      <artifactId>esapi</artifactId>
      <version>2.4.0.0</version>
      <exclusions>
        <exclusion>
          <groupId>log4j</groupId>
          <artifactId>log4j</artifactId>
        </exclusion>
      </exclusions>
    </dependency>

https://github.com/ESAPI/esapi-java-legacy/blob/develop/README.md


(Or whatever version of ESAPI you are using; hopefully the latest version.) When you then 
build your project, this should exclude the log4j jar from your classpath. (Note that you do 
not have to specify a ‘version’.) Note that this of course will only work if you have no other
direct or transitive dependencies on Log4J 1.x.

You can also exclude specific transitive dependencies using Gradle. If you use Grade, 
follow these general instructions.

Note that using this workaround with SLF4J requires ESAPI 2.2.0.0 or later; however, you 
should be able to use this for any version of ESAPI 2.x if you are willing to use JUL for ESAPI
logging. (Note that if you switch to using JUL for ESAPI versions prior to 2.2.1.0, the logging
output will like slightly different than what you get with it configured to use Log4J 1, but it 
will still do “safe” logging.)

Solution
The only “real” solution to this is to have OWASP ESAPI completely remove Log4J 1 as a 
dependency. (See GitHub issue #534.) In release 2.2.1.0 it has been deprecated but we 
cannot remove it immediately and continue to honor our deprecation policy (until either 
two years from the release where it was first announced, which was on the July 23, 2020 
release date for the 2.2.1.0 release or in the next major release of ESAPI, which will be 
3.0). ESAPI 3.0 is currently only in planning stages. Until then you will either have to live 
with the workaround or accept the warnings from various SCA scanners. If you decide to 
live with the SCA scanner warnings, perhaps you can show your management this ESAPI 
security bulletin to convince them that using ESAPI does not make CVE-2022-23302 
exploitable to your application because of the restricted way that ESAPI uses Log4J 1 
classes.

Additional Possible Future Plans About Deprecating Log4j 1
The ESAPI development team is also kicking around some ideas such as:

• GitHub Issue #610 - Logging a WARNING for the first ESAPI log4j output that 
comes out that warns that ESAPI log4j has been deprecated in release 
2.2.1.0 and will be removed in the first release after the 2 year period (i.e., 
after July 23, 2022).

• GitHub Issue #609 - Changing the llog4j 1 dependency in ESAPI’s pom.xml to
make the log4j 1.2.17 jar to have a scope of either ‘provided’ or ‘optional’ so 
that ESAPI will no longer include it as a dependency. That is likely to have it’s
own serious consequences for those who are still using ESAPI logging with 
log4j so we eventually decided it was not worth the effort and closed this.

https://github.com/ESAPI/esapi-java-legacy/issues/609
https://github.com/ESAPI/esapi-java-legacy/issues/610
https://github.com/ESAPI/esapi-java-legacy/issues/534
https://discuss.gradle.org/t/how-do-i-exclude-specific-transitive-dependencies-of-something-i-depend-on/17991


Additional Precautions
Run OWASP Dependency Check or a similar SCA tool or service on your final project 
configuration to ensure that you have no Log4J 1 dependencies in your application’s class 
path.

Acknowledgments
None. But if someone gave me donuts, I’m sure I could credit someone! :)

References
https://nvd.nist.gov/vuln/detail/CVE-2022-23302

https://github.com/ESAPI/esapi-java-legacy/blob/develop/documentation/ESAPI-security-
bulletin6.pdf – which describes the related CVE, CVE-2021-4104.

https://github.com/ESAPI/esapi-java-legacy/blob/develop/documentation/ESAPI-security-bulletin6.pdf
https://github.com/ESAPI/esapi-java-legacy/blob/develop/documentation/ESAPI-security-bulletin6.pdf
https://nvd.nist.gov/vuln/detail/CVE-2022-23302

	Summary
	Background
	Problem Description
	Impact
	Workaround
	Solution
	Additional Possible Future Plans About Deprecating Log4j 1
	Additional Precautions
	Acknowledgments
	References

