
OWASP ESAPI for Java Security Bulletin #8 The OWASP Foundation

New Vulnerability Discovered in ESAPI’s
AntiSamy Policy File, antisamy-esapi.xml

Kevin W. Wall <kevin.w.wall@gmail.com>

Summary

Category:
Improper sanitization of user-controlled input permitted by an
incorrect regular expression in an ESAPI configuration file can result
in that input being unintentionally executing javascript: URLs,
resulting in Cross-Site Scripting (XSS).

Module:
ESAPI Validator. Specifically, the various methods
Validator.getValidSafeHTML() and Validator.isValidSafeHTML() are
vulnerable.

Announced
:

2022-04-17 in the release notes for ESAPI 2.3.0.0.
(https://github.com/ESAPI/esapi-java-legacy/blob/develop/documentation/
esapi4java-core-2.3.0.0-release-notes.txt)

Credits: Kevin W. Wall / Sebastian Passaro and serendipity

Affects:

All versions of ESAPI 2.x prior to 2.3.0.0 (released on 2022-04-17) and all
versions of ESAPI 1.4 (no longer supported) if you are using the default
antisamy-esapi.xml policy file and any of the Validator.getValidSafeHTML()
and Validator.isValidSafeHTML() methods accepting user-controlled input
and that input is eventually rendered as HTML.

Details: See the remainder of this write-up.

GitHub
Issue #:

None.

Related: None in ESAPI, but see CVE-2021-35043 which is a similar one in AntiSamy.

CWE:
CWE-79 (“Improper Neutralization of Input During Web Page Generation
(‘Cross-Site Scripting’)

CVE
Identifier:

CVE-2022-24891

CVSS
Severity
(version
3.1) -
Estimated

CVSS v3.1 Base Score: 6.1 (Medium)
 Impact Subscore: Unassigned
 Exploitability
Subscore:

Unassigned

CVSS Vector CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/
A:N

https://github.com/ESAPI/esapi-java-legacy/blob/develop/documentation/esapi4java-core-2.3.0.0-release-notes.txt
https://github.com/ESAPI/esapi-java-legacy/blob/develop/documentation/esapi4java-core-2.3.0.0-release-notes.txt
mailto:kevin.w.wall@gmail.com
https://www.owasp.org/

(This is very similar to the AntiSamy CVE, CVE-
2021-35043, which has the same CVSS vector.
The only different here is that this has an even
more trivial attack complexity.)

Background
OWASP ESAPI (the OWASP Enterprise Security API) is a free, open source, web application
security control library that makes it easier for programmers to write lower-risk
applications. The ESAPI for Java library is designed to make it easier for programmers to
retrofit security into existing applications. ESAPI for Java also serves as a solid foundation
for new development.

One of the security controls provided by ESAPI for Java is defense against Cross-Site
Scripting (XSS). This XSS defense is primarily provided via the mechanism of the ESAPI
Encoder interface, but also exists as the ESAPI Validator interface, specifically the 2
methods Validator.getValidSafeHTML() and Validator.isValidSafeHTML(). It is precisely
these latter 2 methods that are affected by this particular vulnerability.

Both of these methods (actually, there are 4 of them in total; 2 variations of each) first
check to see if the user-controlled input exceeds a maximum length and checked if null,
and then the canonicalized input is checked against AntiSamy sanitization via ESAPI’s
AntiSamy policy file. For this particular CVE, there was an error in the default ESAPI
antisamy-esapi.xml policy file that AntiSamy uses.

This configuration error dates back to at least the ESAPI 1.4 release and was only fixed in
the 2.3.0.0 release. This error mistakenly allowed “javascript:” pseudo-URLs to be passed
into both the Validator.getValidSafeHTML() and Validator.isValidSafeHTML() methods and
treated as safe input, but such “javascript:” URLs are obviously not safe and may lead to
XSS vulnerabilities in the application code that uses them.

Problem Description & Explanation of Cause
Going back to ESAPI 1.4, ESAPI’s default AntiSamy policy file, called “antisamy-esapi.xml”,
had an incorrect regular expression that (presumably) accidentally allowed the “:”
character as a part of the “onsiteURL”. That meant there was an opportunity for user-
controlled input containing “javascript:” URLs to be recognized as “safe” rather than being
an XSS payload.

So the question is, “am I vulnerable?”. You are if your application satisfies these 2
conditions:

1. You are using the one of the 2 Validator methods in ESAPI that use AntiSamy
(Validator.getValidSafeHTML() or Validator.isValidSafeHTML()) and there is a
way for user-controlled input that is supposed to be sanitized to go through

https://owasp.org/www-project-enterprise-security-api/
https://javadoc.io/static/org.owasp.esapi/esapi/2.3.0.0/org/owasp/esapi/Validator.html#isValidSafeHTML-java.lang.String-java.lang.String-int-boolean-
https://javadoc.io/static/org.owasp.esapi/esapi/2.3.0.0/org/owasp/esapi/Validator.html#getValidSafeHTML-java.lang.String-java.lang.String-int-boolean-
https://javadoc.io/static/org.owasp.esapi/esapi/2.3.0.0/org/owasp/esapi/Validator.html#isValidSafeHTML-java.lang.String-java.lang.String-int-boolean-
https://javadoc.io/static/org.owasp.esapi/esapi/2.3.0.0/org/owasp/esapi/Validator.html#getValidSafeHTML-java.lang.String-java.lang.String-int-boolean-
https://javadoc.io/static/org.owasp.esapi/esapi/2.3.0.0/org/owasp/esapi/Validator.html#isValidSafeHTML-java.lang.String-java.lang.String-int-boolean-
https://javadoc.io/static/org.owasp.esapi/esapi/2.3.0.0/org/owasp/esapi/Validator.html#getValidSafeHTML-java.lang.String-java.lang.String-int-boolean-
https://javadoc.io/static/org.owasp.esapi/esapi/2.3.0.0/org/owasp/esapi/Validator.html
https://javadoc.io/doc/org.owasp.esapi/esapi/latest/org/owasp/esapi/Encoder.html

one of those two methods and the result is that said user-controlled input is
then rendered in a browser.

AND

2. You have your antisamy-esapi.xml policy file configured in a vulnerable way
that allows “javascript:” URLs. That is, if “onsiteURL” regular expression
includes (directly or via an implied character range), the colon character as
well as alphabetic characters.

The “onsiteURL” regular expression in antisamy-esapi.xml files dating back to ESAPI 1.4
that was found to be faulty was:

"([\w\\/\.\?=&;\#-~]+|\#(\w)+)" <== Vulnerable version; the ‘~’ makes it fail

In ESAPI 1.3, it was:

"([\w\\/\.\?=&;\#-]+|\#(\w)+)" <== This version was okay

Had the ‘~’ that was added to the character class some time during the 1.4 release been
added at the end instead of before the ‘-’ and the ‘-’ would have remained as the last
element, and things would have been fine. But when written as ‘\#-~’ within a character
class, that results into accepting all ASCII hex values between ‘#’ (0x23) and ‘~’ (0x73),
and that range happens to include ‘:’ (0x58). Thus the regular expression in its entirety
allowed “javascript:” to be accepted as a “safe” string and the sanitization failed.

Please note: This vulnerability is independent of the actual ESAPI jar that you use.

Impact
If your application using ESAPI is vulnerable, it may allow a user-controlled input that
causes a “javascript:” URL to not be properly sanitized, resulting in either reflected or
possibly persistent (if the input is stored) XSS attacks.

Remediation
Besides updating to use ESAPI 2.3.0.0 (which in itself is not necessary to remediate this
particular CVE, not is it sufficient), one must either:

1. Download an ESAPI “configuration jar” from the GitHub releases link associated with
ESAPI 2.3.0.0 or later (e.g., esapi-2.3.0.0-configuration.jar) and extract the
“configuration/esapi/antisamy-esapi.xml” file from the jar and use that to replace
your application’s AntiSamy policy file (generally named “antisamy-esapi.xml”).

OR

2. Locate your application’s AntiSamy policy file (typically “antisamy-esapi.xml”).

https://github.com/ESAPI/esapi-java-legacy/releases

As noted in the ESAPI 2.3.0.0 release notes, the portion that changed in the release notes
was that we updated 3 regular expressions in the '<common-regexps>' node for our
antisamy-esapi.xml file to reflect the latest regex values from AntiSamy's antisamy.xml
configuration file in their official AntiSamy 1.6.7 release.

The regular expression for “onsiteURL” was found to be vulnerable was updated and
changed to this

 The original (vulnerable) line will look like:

 <regexp name="onsiteURL" value="([\w\\/\.\?=&;\#-~]+|\#(\w)+)"/>

 The corrected line should look like:

 <regexp name="onsiteURL" value="^(?!//)(?![\p{L}\p{N}\\\.\#@\$%\+&;\-_~,\?
=/!]*(&colon))[\p{L}\p{N}\\\.\#@\$%\+&;\-_~,\?=/!]*"/>

The original (possibly vulnerable???) regular expression values for htmlTitle and
offsiteURL:

 <regexp name="htmlTitle" value="[a-zA-Z0-9\s-_',:\[\]!\./\\\(\)]*"/>

 <regexp name="offsiteURL" value="(\s)*((ht|f)tp(s?)://|mailto:)[A-Za-z0-9]+[~a-zA-
Z0-9-_\.@#$%&;:,\?=/\+!]*(\s)*"/>

 The updated regular expression values for them:

 <regexp name="htmlTitle" value="[\p{L}\p{N}\s\-_',:\[\]!\./\\\(\)&]*"/>

 <regexp name="offsiteURL" value="(\s)*((ht|f)tp(s?)://|mailto:)[\p{L}\p{N}]+[\p{L}\
p{N}\p{Zs}\.\#@\$%\+&;:\-_~,\?=/!\(\)]*(\s)*"/>

Note that the regular expressions for “htmlTitle” and “offsiteURL” were updated as
precautionary measures, because both of them have an unquoted ‘-’ in the middle of a
character class surrounded by other special characters. That’s always going to be a red
flag to me even if we haven’t found any specific XSS payload that is exploitable. Instead, it
seemed prudent to just accept AntiSamy’s vetted regular expressions from their
antisamy.xml policy file.

Testing for Vulnerability
Software Composition Analysis tools that look for vulnerabilities in an application’s direct
and transitive dependencies are going to report this CVE in versions of ESAPI prior to
2.3.0.0. That’s fine. Just know that updating to the esapi-2.3.0.0.jar alone is not going to
remediate this issue.

And since some applications using ESAPI have certainly tweaked their antisamy-esapi.xml
file or outright replaced it with one of their own, the remediation may be more
complicated than even swapping out your current antisamy-esapi.xml file with the one
extracted from esapi-2.3.0.0-configuration.jar.

So, what can you do to test it? There are 2 approaches. One is to run semgrep using the
new rule written by @lapt0r at https://semgrep.dev/s/returntocorp:esapi-antisamy-config.
This will look through your XML files for the node ‘<anti-samy-rules>’ and then examine
the regular expressions for “htmlTitle”, “onsiteURL”, and “offsiteURL” to see if they match
the antisamy-esapi.xml regular expressions from ESAPI 2.3.0.0. If not, a warning is
displayed to briefly explain the issue.

Of course, if you customized your antisamy-esapi.xml regular expressions for these regex
names, the semgrep rule may not work for you if you’ve intentionally changed them. In
that case, a better test would be to just write your JUnit test and run it using your current
production ESAPI.properties and antisamy-esapi.xml configuration files and this unit test
case:

 @Test

 public void testJavaScriptURL() throws Exception {

 String expectedSafeText = "This is safe from XSS. Trust us!";

 String badVoodoo = "" + expectedSafeText + "";

 Validator instance = ESAPI.validator();

 ValidationErrorList errorList = new ValidationErrorList();

 String result = instance.getValidSafeHTML("test", badVoodoo, 100, false, errorList);

 assertEquals(expectedSafeText, result);

 }

which is the test from ESAPI 2.3.0.0 branch that verifies this issue is fixed. For details, see:
https://github.com/ESAPI/esapi-java-legacy/blob/2.3.0.0/src/test/java/org/owasp/esapi/
reference/validation/HTMLValidationRuleCleanTest.java#L137-L147. The expectation here
is if things are configured correctly for you, then ESAPI, via AntiSamy, will strip out all the
mark-up leaving only the “This is safe from XSS. Trust us!” portion that is indeed safe.

https://github.com/ESAPI/esapi-java-legacy/blob/2.3.0.0/src/test/java/org/owasp/esapi/reference/validation/HTMLValidationRuleCleanTest.java#L137-L147
https://github.com/ESAPI/esapi-java-legacy/blob/2.3.0.0/src/test/java/org/owasp/esapi/reference/validation/HTMLValidationRuleCleanTest.java#L137-L147
https://semgrep.dev/s/returntocorp:esapi-antisamy-config
https://semgrep.dev/
https://github.com/ESAPI/esapi-java-legacy/releases/download/esapi-2.3.0.0/esapi-2.3.0.0-configuration.jar

Acknowledgments
Sebastian Passaro (@spassarop / sebastian.passaro@owasp.org) – for pinpointing the
cause as the faulty “onsiteURL” regular expression and reviewing this security bulletin and
providing feedback.

Kurt Boberg (@lapt0r / kurt@r2c.dev) – for providing the semgrep rule.

Matt Seil (@xeno6696 / xeno6696@gmail.com) - for reviewing this security bulletin.

References
https://nvd.nist.gov/vuln/detail/CVE-2021-35043 – A very similar CVE in its attack
complexity and impact that is also related to AntiSamy use.

https://nvd.nist.gov/vuln/detail/CVE-2022-24891 – [May take a while to make it to the NVD
database. Will update this to remove this comment once it is there.]

https://nvd.nist.gov/vuln/detail/CVE-2021-35043
mailto:kurt@r2c.dev
https://nvd.nist.gov/vuln/detail/CVE-2022-24891
mailto:xeno6696@gmail.com

	Summary
	Background
	Problem Description & Explanation of Cause
	Impact
	Remediation
	Testing for Vulnerability
	Acknowledgments
	References

